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Abstract 
In this paper, we review our work on a time series forecasting methodology based on the 
combination of unsupervised clustering and artificial neural networks. To address noise and 
non-stationarity, a common approach is to combine a method for the partitioning of the input 
space into a number of subspaces with a local approximation scheme for each subspace. 
Unsupervised clustering algorithms have the desirable property of deciding on the number of 
partitions required to accurately segment the input space during the clustering process, thus 
relieving the user from making this ad hoc choice. Artificial neural networks, on the other 
hand, are powerful computational models that have proved their capabilities on numerous hard 
real-world problems. The time series that we consider are all daily spot foreign exchange rates 
of major currencies. The experimental results reported suggest that predictability varies across 
different regions of the input space, irrespective of clustering algorithm. In all cases, there are 
regions that are associated with a particularly high forecasting performance. Evaluating the 
performance of the proposed methodology with respect to its profit generating capability 
indicates that it compares favorably with that of two other established approaches. Moving 
from the task of one-step-ahead to multiple-step-ahead prediction, performance deteriorates 
rapidly. 
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1. Introduction 

One of the central problems of  science is forecasting; "Given the past  how can we 
predict the future?" The classic approach is to build an explanatory model from first 
principles and measure initial data [Farmer and Sidorowich (1987)]. In the field of  
high frequency exchange rate forecasting we still lack the first principles necessary to 
build models of  the underlying market dynamics that can generate reliable forecasts. 
Foreign exchange rates are among the most important monetary indicators. 

Among the various financial markets the foreign exchange (FX) market stands out, 
being the largest and most liquid in the world. It is a twenty fourth hour market with 
an impressive breadth, depth and liquidity. Currently, average daily trading volume in 
traditional FX markets (non-electronic broker) is estimated at $1.2 trillion. Although 
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the precise scale of speculative trading on spot markets is unknown it is estimated that 
only around 15% of the trading is driven by non-dealer/financial institution trading. 
Approximately, 90% of all foreign currency transactions involve the US Dollar [Bank 
of International Settlements (2001)]. It is widely accepted that exchange rates are 
affected by many highly correlated economic, political, and psychological factors that 
interact in a highly complex manner. The fact that accurate forecasts of currency 
prices are of major importance in the decision making process of firms, in the 
determination of optimal government policies and, last but not least, for speculation 
makes exchange rate prediction one of the most challenging applications of modem 
time series forecasting methodologies. Following the inception of floating exchange 
rates in the early 1970s, economists have attempted to explain and predict their 
movements based on macroeconomic fundamentals. Empirical evidence suggests that 
these models appear to be capable of explaining the movements of major exchange 
rates in the long run and in economies experiencing hyperinflation. Their 
performance is poor, however, when it comes to the short run and out-of-sample 
forecasting [Frankel and Rose (1995), Meese and Rogoff (1983), Meese and Rogoff 
(1986)]. Forecasting tbreign exchange rates, therefore, poses numerous theoretical 
and experimental challenges [Yao and Tan (2000)]. 

At present assume knowledge of only the scalar time series. A scalar time series is a 
set of observations of a given variable z(t)  ordered according to the parameter time, 

and.denoted as z (1 ) , z (2 ) , . . . , z (N) ,  where N is the size of the time series. In this 
context, time series prediction and system identification are embodiments of the old 
problem of function approximation [Principe et al. (1998)]. Conventional time series 
models rely on global approximation, employing techniques such as linear regression, 
polynomial fitting and artificial neural networks. Global models are well suited to 
problems with stationary dynamics. In the analysis of real-world systems two of the 
key problems are non-stationarity (often in the form of switching between regimes) 
and overfitting (which is particularly serious for noisy processes) [Weigend et al. 
(1995)]. Non-stationarity implies that the statistical properties of the data generator 
vary over time. This leads to gradual changes in the dependency between the input 
and output variables. Noise, on the other hand, refers to the unavailability of complete 
information from the past behavior of the time series to fully capture the dependency 
between the future and the past. Noise can be the source of overfitting, which implies 
that the performance of the forecasting model will be poor when applied to new data 
[Cao (2003), Milidiu et al. (1999)]. 

Although global approximation methods can be applied to model and forecast time 
series characterized by the aforementioned propertied, it is reasonable to expect that 
forecasting accuracy can be improved if regions of the input space exhibiting similar 
dynamics are identified and subsequently a local model is constructed for each of 
them. A number of researchers have proposed methodologies to perform this task 
effectively [Cao (2003), Milidiu et al. (1999), Pavlidis et al. (2005)b, Pavlidis et al. 
(2005)c, Principe et al. (1998), Sfetsos and Siriopoulos (2004), Weigend et al. 



N. G. Pavlidis et  al. / Financial Forecasting through Unsupervised Clustering and Neural Networks 1 0 5  

(1995)]. In principle, these methodologies are formed by the combination of two 
distinct approaches; an algorithm for the partitioning of the input space and a function 
approximation model. Evidently the partitioning of the input space is critical for the 
successful application of  these methodologies. 

In this paper we review our work on a time series modeling and forecasting 
methodology that relies on principles of chaotic time series analysis, unsupervised 
clustering, artificial neural networks and evolutionary optimization methods [Pavlidis 
et al. (2005)a, Pavlidis et al. (2005)b, Pavlidis et al. (2005)c]. The methodology can 
be outlined in the following four steps: 

�9 determine the minimum, appropriate, embedding dimension for phase-space 
reconstruction [Kennel et al. (1992)]; 

�9 identify regions of the reconstructed phase-space that exhibit similar dynamics, 
through unsupervised clustering; 

�9 for each such region train a different artificial neural network using patterns 
belonging to the particular region solely; 

�9 to perform out-of-sample forecasting: 
a) assign the input pattern to the appropriate region using as criterion the 

Euclidean distance; 
b) use the corresponding neural network to generate a prediction; 
e) in the case of multiple-step-ahead forecasting, use the prediction to formulate 

the next input pattern, and return to step (a). 
The remaining paper is organized as follows: in the next section we present the 
various methods employed in this study. In Section 3 experimental results regarding 
the spot exchange rate of the German Mark against the US Dollar are presented. The 
paper ends with a short discussion of the results and concluding remarks. 

2. Methods 

In this section we briefly describe the components of the proposed methodology. In 
particular, we outline (a) the algorithm employed to determine an appropriate 
embedding dimension, (b) three unsupervised clustering algorithms, and (c) the 
supervised training of feedforward neural networks. 

2.1 Determining an Appropriate Embedding Dimension 

State space reconstruction is the first step in nonlinear time series analysis of data 
from chaotic systems including estimation of invariants and prediction. The 
observations z(n),  are a projection of the multivariate state space of the system onto 
the one-dimensional axis of z(n)'s. Utilizing time-delayed versions of the observed 
scalar quantity, z(t o + nat) = z(n), as coordinates for phase space reconstruction, we 

create from the set of observations, multivariate vectors in d-dimensional space: 
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y(n)= [z(n) ,z(n + T) , . . . , z (n  + (d - 1)T)]. (1) 

In this manner, we expect that the points in R d form an attractor that preserves the 
topological properties of the unknown original attractor. The fundamental theorem of  
reconstruction, introduced first by Takens [Takens (1981)], states that when the 
original attractor has fractal dimension dA, all self-crossings of  the orbit will be 

eliminated when one chooses d > 2d A . These self-crossings of the orbit are the 

outcome of the projection, and embedding seeks to undo that. The theorem is valid 

for the case of  infinitely many noise-free data. Moreover, the condition d > 2d  A is 

sufficient but not necessary. In other words, it does not address the question: "Given a 
d ~" This scalar time series what is the appropriate minimum embedding dimension, E. 

is a particularly important question when computational intelligence techniques like 
neural networks are used, since the overspecification of input variables is very likely 
to cause sub-optimal performance. To determine the minimum embedding dimension 
we employ the popular method of false nearest neighbors [Kennel et al. (1992)]. 

In an embedding dimension that is too small to unfold the attractor of  the system not 
all points that lie close to each other will be neighbors because of  the dynamics. Some 
will actually be far from each other and simply appear as neighbors because the 
geometric structure of the attractor has been projected down onto a smaller space 

(d  < dE).  In going from dimension d to (d+l) an additional component is added to 

each of  the vectors y(n).  A natural criterion for catching embedding errors is that the 

increase in distance between y(n) and its closest neighbory~ large when 

going from dimension d to (d+l). Thus the first criterion employed to determine 
whether two nearest neighbors are false is: 

I R2+I (n) - R 2 (n) 11/2 z(n + Td) - z (1) (n + Td) 
R Z ( n  ) . = R Z ( n  ) - Rto , (2) 

where RZ(n) is the squared Euclidean distance between point y (n )and  its nearest 

neighbor in dimension d, and Rto ~ is a threshold whose default value is set to 10 

[Kennel et al. (1992)]. If the length of  the time series is finite, as it is always the case 
in real-world applications, a second criterion is required to ensure that nearest 
neighbors are in effect close to each other. More specifically, if the nearest neighbor 

to y(n) is not close R a (n )~  RA[ and it is a false neighbor, then the distance 

Ra+ l (n) resulting from adding an extra component to the data vectors will become 

R d (n) ~ 2R A . That is even distant but nearest neighbors, if  they are false neighbors, 
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they will be stretched to the extremities of the attractor when they are unfolded from 
each other. This observation gives rise to the second criterion used to identify false 
neighbors: 

Rd+ , (n) > A~o," (3) 
RA 

As a measure for RA the value: 

1 - -  2 z], 
is suggested. In the literature [Kennel et al. (1992)] it is recommended to set Ato t to 2. 

If the time series is not contaminated with noise, then the appropriate embedding 
dimension is the one for which the number of false neighbors, as estimated by 
applying jointly the two criteria (2) and (3), drops to zero. If the data is contaminated 
with noise, as is the case for foreign exchange rate time series, then the appropriate 
embedding dimension corresponds to an embedding dimension with a low proportion 
of false neighbors. Once the minimum embedding dimension sufficient for phase 
space reconstruction is identified, time-delayed state space vectors are subjected to 
unsupervised clustering. 

2.2 Unsupervised Clustering Algori thms 

Clustering can be defined as the process of "grouping a collection o f  objects into 
subsets or clusters, such that those within one cluster are more closely related to one 
another than objects assigned to different clusters" [Hastie et al. (2001)]. A critical 
issue in the process of  partitioning the input space for the purpose of time series 
modeling and forecasting is to obtain an appropriate estimation of the number of 
subsets. Over- or under-estimation of this quantity can cause the appearance of 
clusters with little or no physical meaning, and/or clusters containing patterns from 
regions with different dynamics, and/or clusters with very few patterns that are 
insufficient for the training of a artificial neural network. 

This is a fundamental and unresolved problem in cluster analysis, independent of the 
clustering technique applied. For instance, well-known and widely used iterative 
techniques, including Self-Organizing Maps (SOMs) [Kohonen (1997)], the k-means 
algorithm [Hartigan and Wong (1979)], as well as, the Fuzzy e-means algorithm 
[Bezdek (1981)], require from the user to specify the number of clusters present in the 
dataset prior to the execution of the algorithm. On the other hand, algorithms that 
have the ability to approximate the number of  clusters present in a dataset belong to 
the category of unsupervised clustering algorithms. The proposed methodology relies 
solely on unsupervised algorithms. In particular, we consider the Growing Neural Gas 
[Fritzke (1995)], the DBSCAN [Ester et al. (1996)], and the unsupervised k-windows 
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[Tasoulis and Vrahatis (2004), Vrahatis et al. (2002)] clustering algorithms. Next, the 
three aforementioned unsupervised algorithms are briefly presented. 

2.2.1 Growing Neural Gas Clustering Algorithm 

The Growing Neural Gas (GNG) clustering algorithm [Fritzke (1995)] is an 
incremental neural network. It can be described as a graph consisting of k nodes, each 
having an associated weight vector, defining the node's position in the data space, and 
a set of edges connecting it with its neighbors. During the clustering procedure, new 
nodes are added to the network until a maximal number of nodes is attained. GNG 
starts with two nodes, randomly positioned in the data space, connected by an edge. 
Adaptation of  weights, i.e. the nodes' positions, is performed iteratively. For each data 
object the closest node (called the winner node), sl, and the closest neighbor of the 
winner node, s:, are identified. These two nodes are connected by an edge. An age 
variable is associated with each edge. When the edge between sl and s: is created its 
age is set to zero. At each learning step the age variable of  all edges emanating from 
the winner node is increased by one. By tracing the changes o f  the age variable it is 
possible to detect inactive nodes. Edges exceeding a maximal age, R, and any nodes 
having no emanating edges are removed. The neighborhood of  the winner is limited 
to its topological neighbors. The winner and its topological neighbors are moved in 
the data space toward the presented object by a constant fraction of the distance, 
defined separately for the winner and its topological neighbors. There is no 
neighborhood function or ranking concept and thus, all topological neighbors are 
updated in an identical manner. 

2.2.2 The DBSCAN Clustering Algorithm 

The DBSCAN clustering algorithm [Sander et al. (1998)] relies on a density-based 
notion of clusters and is designed to discover clusters of  arbitrary shape and to 
distinguish noise. More specifically, the algorithm relies on the idea that for each 
point in a cluster at least a minimum number of objects, MinPts, should be contained 
in a neighborhood of a given radius, Eps, around it. Thus, by iteratively scanning all 
the points in the dataset DBSCAN forms clusters of points that are connected through 
chains of Eps-neighborhoods, each containing at least MinPts points. 

2.2.3 Unsupervised k-windows 

The unsupervised k-windows clustering algorithm [Tasoulis and Vrahatis (2004), 
Tasoulis and Vrahatis (2005), Vrahatis et al. (2002)] uses a windowing technique to 
discover the clusters in a dataset. More specifically, if we suppose that the dataset 
lies in d dimensions, the algorithm initializes a number of  d-dimensional windows 
over the dataset. At a next step it iteratively moves and enlarges these windows to 
enclose all the patterns that belong to one cluster in a single window. The movement 
and enlargement procedures are guided by the points that lie within the window at 
each iteration. As soon as the movement  and enlargement procedures do not alter 



N. G. Pavlidis et  al. / Financial Forecasting through Unsupervised Clustering and Neural Networks 109 

significantly the number of points within a window they terminate. The final set of 
windows defines the clustering result of the algorithm. The unsupervised k-windows 
algorithm (UKW) applies the k-windows algorithm using a "sufficiently" large 
number of initial windows. The windowing technique of the k-windows algorithm 
allows for a large number of windows to be examined without any significant 
overhead in time complexity. At the final step, the windows that contain a high 
percentage of common points from the dataset are considered to belong to the same 
cluster. Thus, an estimation of the number of clusters is obtained [Alevizos et al. 
(2002), Alevizos et al. (2004), Tasoulis and Vrahatis (2004)]. 

2.3 Supervised Training o f  Feedforward Neural Networks 

Artificial Neural Networks (ANNs) have been widely employed in numerous fields 
and have shown their strengths in solving real-world problems. ANNs are parallel 
computational models comprised of interconnected adaptive processing units 
(neurons), characterized by an inherent propensity for storing experiential knowledge. 
They resemble the human brain in two fundamental respects; firstly, knowledge is 
acquired by the network from its environment through a learning process, and 
secondly, interneuron connection strengths (known as weights) are employed to store 
the acquired knowledge [Haykin (1999)]. ANNs are characterized by properties that 
are highly desirable in the context of time series forecasting, most notably: (i) 
freedom from statistical assumptions, (ii) resilience to missing observations, (iii) 
ability to cope with noise, and (iv) the ability to account for nonlinear relationships 
[Refenes and Holt (2004)]. The price of this freedom is the reliance on empirical 
performance for validation due to the lack of statistical diagnostics and 
understandable structure. Much recent work has been devoted on strengthening the 
statistical foundations of neural model identification procedures (see [Refenes and 
Holt (2004)] and the references therein). 

Numerous neural network models have been proposed, but FNNs are the most 
common. In FNNs neurons are arranged in layers and there are connections between 
neurons in one layer to the neurons of the following layer. The learning rule typically 
used for FNNs is supervised training. Two critical parameters for the successful 
application of FNNs are the appropriate selection of the network architecture and the 
training algorithm. For the general problem of  function approximation, the universal 
approximation theorem, proved in [White (1990)] states that: 

Theorem 2.1 Standard Feedforward Networks with only a single hidden layer can 
approximate any continuous function uniformly on any compact set and any 
measurable function to any desired degree of accuracy. 
An immediate implication of the above theorem is that any lack of success in 
applications must arise from inadequate learning and/or an insufficient number of 
hidden units and/or the lack of a deterministic relationship between the input patterns 
and the desired response (target). 
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In the context o f  time series modeling the inputs to the FNN typically consist of  a 
number of delayed observations, while the target is the next value of the series. The 
universal myopic mapping theorem [Sandberg and Xu (1997)a, Sandberg and Xu 
(1997)b] states that any shift-invariant map can be approximated arbitrarily well by a 
structure consisting of  a bank o f  linear filters feeding an FNN. An implication of this 
theorem is that, in practice, FNNs alone can be insufficient to capture the dynamics of  
a non-stationary system [Haykin (1999)]. This is also verified by the results presented 
in this paper. 

The selection of  the optimal network architecture for a specific task remains up to 
date an open problem. An upper bound on the architecture of  an FNN designed to 

approximate a continuous function defined on the unit cube in2] n is given by the 
following Theorem [Pinkus (1999)]: 

Theorem 2.2 On the unit cube in R ~ any continuous function can be uniformly 
approximated, to within any error by using a two hidden layer network having 2n+l 
units in the f irst  layer and 4n+3 units in the second layer. 

The FNN supervised training process is an incremental adaptation of the weights that 
propagate information between the neurons. Learning in FNNs is achieved by 
minimizing the network error using a batch, also called off-line, or an on-line training 
algorithm. Batch training is considered as the classical machine learning approach. In 
time series applications, a set of patterns is used for modeling the system, before the 
network is actually used for prediction. In this case, the goal is to find a minimizer 

w* = ( w  1 , w 2 ,..., w n ) ~ R n such that: 

w = min E ( w )  
w ~ R  n 

where, E is the batch error measure o f  the FNN, whose l-th layer (l = 1 ..... M) contains 
Nl neurons: 

P 

E=2  _ y j , , , - t j , , 3  = = E (4) 

In the above relation, the error function is based on the squared difference 

between yj.~, the actual output value at thejth output layer neuron for pattern p, and 

the target output value, tj,p. Ep is the error of  the p-th pattern and p is the index over 

the input-output pairs. To predict the next value of the time series, there is only one 
output neuron (ArM = 1). On the other hand, when the problem is formulated as a 
classification task the value of NM can vary according to the number of  classes. The 
error function of  Eq. (4) is not the only possible choice for the objective function. A 
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variety of distance functions are available in the literature, such as the Minkowsky, 
Mahalanobis, Camberra, Chebychev, Quadratic, Correlation, Kendall's Rank 
Correlation and Chi-square distance metrics; the Context-Similarity measure; the 
Contrast Model; hyperectangle distance functions and others [Wilson and Martinez 
(1997)]. 

Supervised training is, in general, a difficult task since the dimension of the weight 
space is typically very high, and the error function E generates a complicated surface, 
characterized by multiple local minima and broad flat regions adjoined to narrow 
steep ones. 

In on-line training, the FNN weights are updated after the presentation of each 
training pattern. On-line training may be the appropriate choice for learning a task 
either because of the very large (or even redundant) training set, or because of the 
slowly time-varying nature of the task. Although batch training seems faster for 
small-size t r a in ing  sets and networks, on-line training is probably more efficient for 
large training sets and FNNs. Furthermore, it often helps to avoid local minima and 
provides a more natural approach for learning non-stationary tasks, such as time 
series modeling and prediction. On-line methods seem to be more robust than batch 
methods as errors, omissions, or redundant data in the training set can be corrected, or 
ejected during the training phase. 

In this paper we have employed and compared four algorithms for batch training and 
one on-line training algorithm. The batch training algorithms were the well-known 
Resilient Propagation (RProp) [Riedmiller and Braun (1993)], a Scaled Conjugate 
Gradient (SCG) [Moller (1993)] and two population based algorithms that do not 
require the gradient of  the error function, namely the Differential Evolution algorithm 
(DE) [Storn and Price (1997)] and the Particle Swarm Optimization (PSO) [Eberhart 
et al. (1996)]. We also tested the recently proposed Adaptive On-line 
BackPropagation training algorithm (AOBP) [Magoulas et al. (2001), Plagianakos et 
al. (2000)]. Next, we briefly describe the AOBP, the DE, as well as, the PSO 
algorithms. 

2.3.1 The Online Neural Network Training Algorithm 

Despite the abundance of methods for learning from examples, there are only a few 
that can be used effectively for on-line learning. For example, the classic batch 
training algorithms can not straightforwardly handle non-stationary data. Even when 
some of them are used in on-line training the problem of "catastrophic interference" 
appears, in which training on new examples interferes excessively with previously 
learned examples, leading to saturation and slow convergence [Sutton and Whitehead 
(1993)]. Methods suited to on-line learning are those that can handle time-varying 
data, while at the same time, require relatively little additional memory and 
computation in order to process one additional example. The AOBP method proposed 
in [Magoulas et al. (2001), Plagianakos et al. (2000)] belongs to this class of  methods. 
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The key features of this method are the low storage requirements and the inexpensive 
computations. At each iteration the d-dimensional weight vector is evaluated using 
the following update formula: 

w g+l = w g _ r lgVE(w g) 

To calculate the learning rate for the next iteration, r/g+l , AOBP uses information 

from the current and the previous iteration. In detail, the new learning rate is 
calculated through the following relation: 

,7 + 

where r/is the learning rate, K is the meta-learning rate constant (typically K = 0.5), 

and (,) stands for the usual inner product in R d. This approach stabilizes the learning 

rate adaptation process, and previous experiments [Magoulas et al. (2001), 
Plagianakos et al. (2000)] have shown that it allows the method to exhibit good 
generalization and high convergence rate. 

2.3.2 Di f f e ren t ia l  Evolu t ion  Tra in ing  A lgor i thm 

DE [Storn and Price (1997)] is a novel minimization method designed to handle non- 
differentiable, nonlinear and multimodal objective functions, by exploiting a 
population of  NP potential solutions (d-dimensional vectors) to probe the search 
space. At each iteration of the algorithm, called generation, g, three steps, mutation, 
recombination, and selection, are performed to obtain more accurate approximations 
[Plagianakos and Vrahatis (2002)]. Initially, all weight vectors are initialized by 
using a random number generator. At the mutation step, for each i =1 ..... NP a new 

mutant weight vector vZg+l is generated by combining weight vectors, randomly chosen 

from the population, and exploiting the following variation operator: 

V i =Coi -[-fil(cobgeSt-- i -I-(O~ r2 % -cog ) (5) 

where c@ andcog 2 are randomly selected vectors, different fromcoZg, and CogbeSt'lS the 

member of  the current generation that yielded the lowest error function value. Finally, 
the positive mutation constant/z,  controls the magnification of the difference 

between two weight vectors (typically /z = 0.8 ). 

The resulting mutant vectors are mixed with a predetermined weight vector, called 
target vector. This operation is called recombination, and it gives rise to the trial 
vector. At the recombination step, for each component j = l , 2  ..... d of the mutant 
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weight vector a random number r ~[0 ,1] is  generated. If  r is smaller than the 

predefined recombination constant p (typically p = 0.9), the j-th component of the 
i mutant vector Vg+lbecomes the j-th component of  the trial vector. Otherwise, the j- th 

component of the target vector, CO'g, is selected as the j- th component of  the trial 

vector. Finally, at the selection step, the trial weight vector obtained after the 
recombination step is accepted for the next generation, if and only if, it yields a 
reduction of  the value of the error function relative to the previous weight vector; 
otherwise, the previous weight vector is retained. 

2.3.3 Particle S w a r m  Optimization Training Algor i thm 

PSO is a swarm-intelligence optimization algorithm capable of  minimizing non- 
differentiable, nonlinear and multimodal objective functions. Each member of the 
swarm, called particle, moves with an adaptable velocity within the search space, and 
retains in its memory the best position it ever encountered. The best position ever 
attained by the swarm is communicated among the particles at each iteration 
[Eberhart et al. (1996)]. 

Assume a d-dimensional search space, S c R d , and a swarm of  NP particles. Both 
the position and the velocity of  the i-th particle are d-dimensional 

vectors, x i E S and v t ~ R d ,  respectively. The best previous position ever 

encountered by the i-th particle is denoted by Pi ,  while the best previous position 

attained by the swarm is denoted by pg.  The velocity [Clerc and Kennedy (2002)] of  

the i-th particle at the (g+l)- th  iteration is obtained through Eq. (6). The new position 
of  this particle is determined, through Eq. (7), by simply adding the velocity vector to 
the previous position vector. 

(6) 

= + g+l  (7) 

where i = 1 ..... NP ; C1 and c2 are positive constants (typically C 1 = C 2 = 2.05); rl, r2 are 
random numbers uniformly distributed in [0,1]; a n d z i s  the constriction factor 

(typically Z = 0.729 ). In general, PSO has proved to be very efficient and effective 
in tackling various difficult problems [Parsopoulos and Vrahatis (2002)]. 
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3. Presentation of Experimental Results 
Numerical experiments were performed using a Clustering and a Neural Network 
C++ Interface, built under a Linux operating system using the GNU compiler 
collection (gcc). In all cases, we evaluate the accuracy of the forecasting methodology 
by the percentage of correct sign prediction [de Bodt et al. (2001), Giles et al. (2001), 
Walczak (2001)]. This measure captures the percentage of forecasts in the test set for 
which the following inequality is satisfied: 

A 
( z , + d -  z,+~_,). (z,+~ - z,+~_i) > 0 (8) 

where, ~,+d represents the predicted value, while zt+ d refers to the true value of the 

exchange rate at period (t+d), and finally, Zt+d_ ~ stands for the value of the exchange 

rate at the current period, (t+d-1).  Correct sign prediction in effect captures the 
percentage of profitable trades enabled by the forecasting system. To successfully 
train FNNs capable of forecasting the direction of change of the time series, a 
modified, nondifferentiable, error function is implemented: 

I A /x 
0 .5 .  z,+ d - z~+~, i f  ( z , + ~ -  z,+a_ ~). (zt+ d - z,+d_ ,)  > 0 

Ep = [  A 
zt+ a - zt+ a , o t h e r w i s e .  

(9) 

Since gradient descent based algorithms are not applicable for this function it is 
employed only when FNNs are trained through the DE and PSO algorithms. 

3.1 One-Step-Ahead Forecasting 

In [Pavlidis et al. (2005)c] we considered the time series of the daily spot prices of the 
exchange rate of the German Mark relative to the US Dollar over the period from 
10/9/1986 to 8/9/1996, covering approximately ten years [Keogh and Folias (2002)]. 
The total number of observations was 2567. The first 2317 were used to evaluate the 
parameters of the predictive models, while the remaining 250, covering 
approximately the final year of the dataset, were employed for performance 
evaluation. 

The first step in the analysis and prediction of time series originating from real-world 
systems is the choice of an appropriate time delay, T, and the determination of the 
embedding dimension, d. To select T an established approach is to use the value that 
yields the first minimum of the mutual information function [Fraser (1989)]. For the 
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considered time series no minimum occurs for T = 1 .... ,20, as illustrated in Fig. 1 
(left). In this case a time delay of  one is the typical choice. To determine the 
minimum embedding dimension for state space reconstruction we applied the method 
of  false nearest neighbors [Kennel et al. (1992)]. As illustrated in Fig. 1 (right) the 
proportion of  false nearest neighbors as a function of d drops sharply to the value of  
0.006 for d equal to five, which is the embedding dimension that we selected, and it 
becomes zero for dimensions higher than seven. With this embedding dimension the 
number of patterns used to evaluate the parameters of the predictive models was 2312 
while the performance of  the models was evaluated on the last 250 patterns. 

Figure 1. Mutual information as a function of  T (left) and proportion of  false nearest 
neighbors as a function of  d (right). 

Having selected an embedding dimension, we tested numerous FNNs with different 
architectures and training algorithms, but no single FNN was capable of  producing a 
satisfactory test set prediction accuracy. In fact, the obtained forecasts resembled a 
time-lagged version of  the original series [Yao and Tan (2000)]. Next, the three 
unsupervised clustering algorithms, namely GNG, DBSCAN and UKW, were applied 
on the patterns of  the training set to partition the input space. Note that the value to be 
predicted by the FNNs acting as local approximators (target value), was also included 
in the patterns comprising the dataset supplied to the clustering algorithms. Our 
experience suggests that this approach slightly improves the overall forecasting 
performance. Once the clusters present in the training set are identified, each pattern 
from the test set is assigned to one of the clusters. Since the target value for patterns 
in the test set is unknown the assignment is performed by not taking into 
consideration the additional dimension that corresponds to the target component. A 
test set pattern is assigned to the cluster to which the nearest (in terms of  Euclidean 
distance) node, pattern, window center, belongs for the GNG, DBSCAN, and UKW 
algorithms, respectively. 
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The results obtained are reported in Tables 1-3 and the accompanying figures. Each 
table reports the total number of clusters identified in the training set, and the number 
of clusters to which test set patterns were assigned. For each of these clusters, the 
tables report, the number of patterns that were assigned to it from the training set and 
the test set. Notice that irrespective of the clustering algorithm, a relatively small 
proportion of  the patterns contained in the training set was actually used to generate 
the predictions, since training only the FNNs corresponding to the particular clusters 
is necessary. The accompanying figures provide candlestick plots. Each candlestick 
depicts for a cluster and a training algorithm the forecasting accuracy with respect to 
sign prediction over 100 experiments. A filled box is plotted between the first and 
third quartile of the data. The lines extending from each end of the box (whiskers) 
represent the range of the data. The black line inside the box stands for the mean 
value of the measurements. An immediate observation from the inspection of the 
figures is that irrespective of the clustering algorithm used there are significant 
differences in the predictability of different clusters. Moreover, within the same 
cluster, different training algorithms produced FNNs yielding different predictive 
accuracies. 

Figure 2. Proportion of correct sign prediction based on the clustering of the input 
space using the UKW algorithm. 

For clusters 1, 3, 5 identified by the UKW algorithm and having the corresponding 
FNNs trained by the DE and PSO algorithms, a mean predictive accuracy exceeding 
60% was achieved. These three clusters together comprise more than 50% of the test 
set. However, the predictability of cluster 4 (26.8% of  the test set) is low. As 
previously mentioned, DBSCAN has the ability to identify outliers in a dataset. In this 
case close to 50% of the patterns of the test set were characterized as outliers. The 
FNN trained on these patterns produced a poor performance. On the other hand, the 
mean predictability for clusters 1 and 2 was around 55%. Note that cluster 3 (to which 
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four test patterns were assigned) exhibited extremely high predictability. The GNG 
algorithm distinguished cluster 2 for which the corresponding FNN produced a mean 
accuracy close to 60% irrespective of the training algorithm used. For cluster 4, PSO 
and DE exhibited good performance, but the other three algorithms yielded the worst 
performance witnessed in this study. 

Figure 3. Proportion of correct sign prediction based on the clustering of the input 
space using the DBSCAN algorithm. 

Figure 4. Proportion of correct sign prediction based on the clustering of the input 
space using the GNG algorithm. 
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Among the unsupervised clustering algorithms considered, UKW's performance 
appears to be more robust. Both the DBSCAN and the GNG algorithms, however, 
were capable of  identifying meaningful clusters that yielded increased predictability 
in the test set. From the training algorithms considered, FNNs trained using the 
AOBP training algorithm exhibited the highest maximum performance. On the other 
hand, the performance of the population based algorithms, DE and PSO, exhibited 
wide variations. 

3.2  T r a d i n g  P e r f o r m a n c e  

In [Pavlidis et al. (2005)a] we investigate the profitability of the aforementioned 
methodology combined with a simple trading rule, and compared its performance 
with two other widely known forecasting methodologies, namely global FNNs and k 

nearest neighbor regression. To generate a prediction fo rz ( t )  from the information 

available up to time (t-I), the k nearest neighbors regression method firstly identifies 

the k nearest neighbors of the pattern y(t-d).  An estimator of E(:z  t I z, 

obtained through, 
k 

Z O)t,iZ i , 
i-1 

where , , i  is the weight assigned to the i-th nearest neighbor. Alternative 

configurations of the weights are possible but we employed uniform weights as they 
are the most frequently encountered configuration in the literature. The global FNN 
had a 5-5-4-1 architecture and was trained for 200 epochs using the Improved 
Resilient Propagation algorithm [Igel and Husken (2000)]. 

The profitability of these methodologies was evaluated on the time series of the daily 
spot exchange rate of the Euro against the Japanese Yen. The 1682 available 
observations cover the period from 12/6/1999 to 29/6/2005. The first 1482 
observations were used as a training set, while the last 200 observations were used to 
evaluate the profit generating capability of the different methodologies. In particular, 
we assume that on the first day we have 1000 Euros available. The trading rule that 

A 

we considered is the following: if the system at date t, holds Euros and z,+~ > z t 

A 

(where zt+ 1 is the predicted price for date ( t+ l )  and z t is the actual price at date t) then 

the entire amount available is converted to Japanese Yen. On the contrary, if the 
A 

system holds Japanese Yen and zt+ 1 < z,, then the entire amount is converted to 

Euros. In all other cases, the holdings do not change currency at date t. The last 
observation of  the series is employed to convert the final holdings to Euros. When 
transactions costs are included they are set to 0.25% of the total amount [Allen and 



N. G. Pavlidis et aL / Financial Forecasting through Unsupervised Clustering and Neural Networks 119 

Karjalainen (1999)]. A perfect predictor, i.e. a predictor that correctly predicts the 
direction of change of the spot exchange rate at all dates, achieves a total profit of 
approximately 9716 Euros excluding transactions costs, while including transactions 
costs reduces total profit to approximately 7301 Euros. 

Figure 5. Trading performance of the different forecasting methodologies. 
Top: Excluding transactions costs. Bottom: Including transactions costs. 
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The profitability from trading based on the predictions of  the global FNN model is 
depicted with the red line (Global FNN) in Fig. 5. As can be seen from Fig. 5, 
excluding transactions costs the FNN is capable of  achieving a profit of  282.94 Euros 
over the 200 days of the test set, while including transactions costs reduces total profit 
to 109.57 Euros. Next, the results obtained by the k nearest neighbor regression 
method are presented. We experimented with all the integer values of  k in the range 
[ 1,20]. The best performance was exhibited for k=5, and is illustrated with the black 
line (5 Nearest Neighbor) in Fig. 5. The 5 nearest neighbor method achieved a profit 
of 379.51 excluding transactions costs and 129.16 including transactions costs. 
Finally, the performance of the forecasting system based on the segmentation of  the 
input using the UKW algorithm and utilizing an FNN to act as a local predictor for 
each cluster, is illustrated with the blue line (UKW FNN) in Fig. 5. This approach 
achieved the highest profit: in the absence of transactions costs, 472.16 Euros, and 
235.54 including transactions costs. 

3.3 Multiple Step Ahead Forecasting 

In [Pavlidis et al. (2005)b] we considered the problem of  multiple-step-ahead 
forecasting. The time series considered was that of  the Japanese Yen against the U.S. 
Dollar. The series consists of 1827 observations spanning a period of  five years, from 
the 1 st of  January 1998 until the 1 st of  January of  2003. The series is freely available 
from the website www.oanda.com. The training set contained the first 1500 patterns, 
while the remaining patterns, covering approximately the final year of data, were 
assigned to the test set. 

The UKW algorithm was employed to compute the clusters present in the training set. 

Pattern n is of  the form p ,  = [z , . . . ,  z +d+h_ 1 ], n = 1,..., 1500,  and h=2,5 represents 

the forecasting horizon. That is the values to be predicted [z +d,...,Zn+d+h_ 1] are 

components o f  the pattern vectors employed by the UKW algorithm. The FNNs 
associated with each cluster were trained to minimize the mean squared error of one- 
step-ahead prediction. As an additional evaluation criterion, the performance of  the 
FNNs on the task of two- and five-step-ahead prediction on the training set was 
monitored. Having trained all the FNNs for 100 epochs, their performance on the task 
of two- and five-step-ahead prediction was evaluated on the test set. For the clusters 
to which patterns from the test set were assigned, Tables 4 and 5 report the minimum 
(min), mean, and maximum (max) performance with respect to correct sign 
prediction. Also the standard deviation (st.dev), as well as, the performance of  the 
FNN that managed the highest multiple-step-ahead sign prediction on the train set 
(best) are provided. The number of  test patterns that were assigned to each cluster is 
indicated next to the cluster index. Due to space limitations, the results for one cluster 
containing four patterns from the test set are not reported in Table 4 for the two-step- 
ahead problem, while for the five-step-ahead task the results for three clusters 
containing one, four and five patterns respectively are not reported in Table 5. 
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Table 4. 

Cluster 5:13 patterns 

min mean max st.dev best 

0.46 0 . 4 6  0.46 0 0.46 

0.46 0 . 4 9  0 . 6 1  0 . 0 5  0.53 

0.46 0 . 4 6  0.46 0 0.46 

Results for the problem of 2-step-ahead prediction 

Cluster 9:60 patterns 

Cluster 6:39 patterns 

min mean max st.dev best 

0.46 0 . 5 6  0 . 6 1  0 . 0 5  0.46 

0.43 0 . 5 7  0 . 6 1  0 . 0 7  0.61 

0.61 0.61 0.61 0 0.61 

Cluster 7:64 patterns 

min mean max st.dev best 

0.37 0 . 4 1  0.43 0.01 0.42 

0.45 0 . 4 5  0.45 0 0.45 

0.45 0.,45 0.45 0 0.45 

Cluster 8:42 patterns 

min mean max st.dev best 

AOBP 0 .38  0.46 0.5 0.04 0.38 

SCG 0.35 0.5 0.54 0.06 0.35 

RProp 0.5 0.52 0.54 0 .01  0.54 

min mean max st.dev best 

AOBP 0.51 0 . 5 7  0 . 6 1  0.03 0.6 

SCG 0.46 0.5 0.58 0 . 0 3  0.58 

RProp 0 .43  0 . 4 7  0.48 0 . 0 1  0.48 

Cluster 10:23 patterns 

min mean max st.dev best 

AOBP 0.47 0 . 5 3  0.56 0 . 0 3  0.52 

SCG 0.47 0 . 5 4  0.56 0 . 0 3  0.56 

RProp 0 .52  0.54 0.6 0.03 0.52 

Cluster 11:25 patterns 

min mean max st.dev best 

AOBP 0.56 0 . 6 1  0.72 0.06 0.56 

SCG 0 . 5 2  0.52 0.6 0.02 0.52 

RProp 0 .52  0 . 5 2  0.52 0 0.52 

Cluster 12:50 patterns 

min mean max st.dev best 

AOBP 0.42 0.45 0.5 0.03 0.48 

SCG 0.44 0 . 5 1  0.52 0.02 0.44 

RProp 0.52  0 . 5 2  0.52 0 0.52 

On the task of  two-step-ahead prediction (Table 4), no FNN was able to achieve a 
correct sign prediction exceeding 50% for the patterns that were classified to cluster 
7. A similar behavior is observed for clusters 17, 18, 19, and 20 for the  five-step- 
ahead prediction task. On the other hand, the minimum correct sign prediction 
exceeds 50% for most training algorithms in clusters 10 and 11 of  Table 4 and 
clusters 14, 15, and 21 of  Table 5. It is important to note that the FNNs that achieved 
the best performance on the task of  two- and five-step-ahead prediction on the 
training set were rarely the ones that exhibited the highest performance on the test set. 
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Table 5. Results for the problem 
Cluster  11:35 patterns 

min mean max st.dev best 

AOBP 0.51 0.53 0.54 0.01 0.54 

SCG 0.34 0.48 0.54 0.07 0.45 

RProp 0.48 0.51 0.54 0.01 0.51 

Cluster  12:17 patterns 

min mean max st.dev best 

AOBP 0.35 0.42 0.52 0.07 0.52 

SCG 0.17 0.27 0.35 0.05 0.29 

RProp 0.17 0.33 0.52 0.13 0.52 

Cluster  13:9 patterns 

min mean max st.dev best 

AOBP 0.22 0.24 0.33 0.04 0.22 

SCG 0,22 0.23 0.33 0.03 0.22 

RProp 0.22 0.26 0.33 0.05 0.33 

Cluster  14:75 patterns 

min mean max st.dev best 

AOBP 0.54 0.56 0.57 0 0.56 

SCG 0.49 0.55 0.58 0.02 0.49 
I 

R P r o p  0.54 0.56 0.58 0.01 0.57 

Cluster  15:64 patterns 

min mean max st.dev best 

AOBP 0.59 0.6 0,6 0 0.59 

SCG 0.57 0.6 0.6 0 0.6 

RProp 0.56 0.6 0.62 0.01 0.59 

Cluster  16:15 patterns 

min mean max st,dev best 

AOBP 0.46 0.46 0.46 0 0.46 

of 5-step-ahead prediction 
V 

SCG p0 .4  0.46 0.46 
/ 

RProP10.26 0.41 0.46 0.06 0.4 

Cluster  17:16 patterns 

min mean max st.dev best 

AOBP 0.25 0.25 0.25 0 0.25 

SCG 0.18 0.4 0.5 0.12 0.18 

RProp 0.18 0.35 0.5 0.11 0.18 

Cluster  18:9 patterns 

min mean max st.dev best 

AOBP 0.33 0.33 0.33 0 0.33 

SCG 0.11 0.13 0.33 0.07 0.11 

RProp 0.11 0.18 0.33 0.07 0.11 

Cluster  19:17 patterns 

min mean max st.dev best 

AOBP 0.35 0,39 0.41 0.02 0.41 

SCG 0.17 0.23 0.29 0.02 0.23 

RProp 0.23 0.32 0.41 0.04 0.41 

Cluster  20:10 patterns 

min mean max st.dev best 

AOBP 0.2 0.26 0.3 0.05 0.2 

SCG 0.2 0.24 0.4 0.06 0.3 

RProp 0.2 0.26 0.3 0.05 0.3 

Cluster  21:40 patterns 

min mean max st.dev best 

A O B P  0.55 0.55 0.55 0 0.55 

SCG 0.55 0.58 0.6 0.01 0.55 

RProp 0.57 0.6 0.62 0.0t 0.6 
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Selecting among the trained FNNs for each cluster the one with the highest 
performance with respect to minimum, mean, maximum and highest multiple-step- 
prediction accuracy on the training set, respectively, we computed the mean 
forecasting performance achieved on the entire test set. These results are illustrated in 
Table 6 for the two- and five-step-ahead tasks. As expected the accuracy of the 
forecasts deteriorates as the forecasting horizon is expanded. 

Table 6. Overall forecasting accuracy achieved by selecting the best performing 
FNN with respect to min, 

min 

2-step-ahead 0.51 

5-step-ahead 0.48 

mean, max, and best, resj~ectively. 

mean max best 

0.53 0.575 0.55 

0.51 0.56 0.51 

Since the embedding dimension used to construct the input patterns for the FNNs 
acting as local predictors was five, to perform six-step-ahead prediction through the 
aforementioned approach, implies that all the elements of input vector are previous 
outputs of the model. In other words, the problem becomes one of iterated (closed- 
loop) prediction. We have tested the performance of the system on this task, but the 
model fails to keep track of the evolution of the series. In effect beyond a certain 
number of iterated predictions the output of the model converges, to a constant value, 
implying that the system has been trapped in a fixed point. Enhancing the model so as 
to be able to overcome this limitation is a very interesting problem which we intend to 
address in future work. 

4. Conclusions 

This paper presents a time series forecasting methodology which draws from the 
disciplines of chaotic time series analysis, clustering, and artificial neural networks. 
The methodology consists of four s tages.  Primarily the minimum dimension 
necessary for phase space reconstruction through time-delayed embedding is 
calculated using the method of false nearest neighbors. To identify neighborhoods in 
the state space, time delayed vectors are subjected to unsupervised clustering. Thus, 
the number of clusters present in a dataset is endogenously approximated. 
Subsequently, a different feedforward neural network is trained on each cluster to act 
as a local predictor for the corresponding subspace of the input space. The 
methodology is applied to generate one-step-ahead, as well as, multiple-step-ahead 
forecasts for different time series of daily spot foreign exchange rates of major 
currencies. The obtained experimental results are promising for the case of one-step- 
ahead forecasting. A finding common to all the unsupervised clustering algorithms 
considered is the identification of regions characterized by substantially different 
predictability. This result highlights the importance of devising a scheme that will be 
capable of synthesizing the outcome of different algorithms to produce a satisfactory 
performance on a broader region of the input space.: Trading based on the signals 
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obtained through the proposed approach generates positive profit, despite the very 
simple nature of the trading rule applied and the inclusion of trading costs. As 
expected, multiple-step-ahead prediction is a considerably more difficult task. Indeed 
the mean performance of the methodology under examination marginally exceeds the 
benchmark of 50%. In future work the synthesis of the results of the different 
clustering algorithms to improve the forecasting performance in larger regions of the 
input space, will be considered. We also intend to address the issue of iterated 
prediction, by incorporating the test proposed by Diks et al. (1996) which provides a 
measure of the extent to which the developed prediction system accurately captures 
the attractor of the measured data [Bakker et al. (2000)]. We also intend to consider 
alternative neural network models like recurrent neural networks. 
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